
remote sensing  

Article

CONvective–STRAtiform Identification Neural
Network (CONSTRAINN) for the WIVERN mission

Federico Mustich 1 and Alessandro Battaglia 1,2* and Francesco Manconi 1* and Pavlos Kollias
3,4* and Antonio Parodi 5*

1 DIATI, Politecnico di Torino, 10129 Turin, Italy
2 Earth Observation Science Group, Department of Physics and Astronomy, University of Leicester,

Leicester LE1 7RH, UK
3 School of Marine and Atmospheric Sciences, Stony Brook University, NY, USA
4 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC, Canada
5 CIMA Foundation, Savona, Italy
* Correspondence: alessandro.battaglia@polito.it

Received: 05 September 2025; Accepted: XXXXX

Abstract: The WIVERN mission promises to deliver the first global observations of the
three-dimensional wind field and the associated cloud and precipitation structure in a wide range of
atmospheric phenomena, including isolated thunderstorms, tropical cyclones, mid-latitude frontal
systems, and polar lows. A critical element in the development of the mission’s wind products is the
differentiation between stratiform and convective regions. Convective regions are defined as those
where vertical wind velocities exceed 1 m/s. This work introduces CONSTRAINN, a family of U-Net
based neural network models that utilise all of WIVERN observables—including vertical profiles
of reflectivity and Doppler velocity, as well as brightness temperatures—to reconstruct convective
wind activity within the Earth’s atmosphere. Results show that the retrieved convective/stratiform
masks are well reconstructed with an equitable threat score exceeding 0.6. Ablation experiments
further reveal that Doppler Velocity signals are the most informative for the reconstruction task.
Source code, data, and trained checkpoints are available, open-source and open-weights, at
https://github.com/Anatr1/CONSTRAINN.
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1. Introduction

The WIVERN (WInd VElocity Radar Nephoscope) mission concept, one of the two candidate
missions competing for selection as the Earth Explorer 11 mission within the European Space Agency’s
FutureEO programme, promises to revolutionize the study of clouds, with its 800 km swath fast
conically scanning 94 GHz Doppler radar at an incidence angle of about 42 degrees [1–3]. This
configuration allows WIVERN to measure in-cloud winds at the native horizontal resolution of
1 km along track, with approximately 600 m vertical resolution. The WIVERN Doppler velocity
measurements will provide information on the motion of the cloud and precipitation particles along
the Line of Sight (LoS), i.e., the antenna boresight looking direction. Because WIVERN observes the
atmosphere at a slant incidence angle, the Doppler signal represents a combination of both horizontal
and vertical air motions, as well as the hydrometeors’ sedimentation velocity. In regions where vertical
motions are negligible and the hydrometeor fall speed can be accurately estimated, it is possible
to retrieve the horizontal wind component projected along the horizontal line of sight (VHLoS)—the
mission’s flagship product. This information can be used, for example, in data assimilation systems to
improve numerical weather prediction [4,5]. To derive this wind product, it is essential to distinguish
between atmospheric regimes where the vertical velocity (w) can be considered negligible (defined
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as |w| ≤ 1,m/s), referred to as stratiform, and those where w is significant, known as convective. In
stratiform regions, VHLoS can be directly derived under the assumption that vertical motion is minimal.
Conversely, in convective regions, if VHLoS can be reconstructed from nearby stratiform regions, it may
then be possible to estimate the vertical wind component. These unique in-cloud wind products will
then further provide:

• Full vector wind estimates within clouds over parts of the 800 km swath, by combining the
forward and backward radar looks, offering an unparalleled perspective on cloud dynamics
[6,7].

• Insights into convective organisation and anvils morphology, by combining the LoS winds with
radar reflectivity to derive convective mass fluxes and assess radiative impacts [3].

• Advanced understanding of the processes governing the formation, organisation, and
intensification of mesoscale convective systems, tropical cyclones, and mid-latitude windstorms
[8].

The convective/stratiform (C/S) classification is also of general interest for scientific purposes as
stratiform and convective regimes differ in two fundamental ways:

1. Formation mechanisms: convective precipitation is associated with strong vertical motions and
the growth of hydrometeors via coalescence and/or riming, whereas, stratiform precipitation
occurs in regions with much weaker vertical motion, dominated by vapour deposition and
aggregation.

2. The distinct microphysical processes associated with each regime result in differing diabatic
heating structures, which, in turn, influence large-scale atmospheric circulation in different ways
[9].

Over the past 30 years, many methodologies have been developed to separate convective and stratiform
regimes. Drawing on data from missions such as TRMM, GPM, CloudSat, and EarthCARE (for details
on atmospheric radars, see Battaglia et al. [10]), the scientific community has gained considerable
experience in classifying deep hydrometeor layers as either stratiform or convective using only the
reflectivity measured by spaceborne radars, typically through echo-object classification schemes. For
low frequency radar (such as the Ku-band radar on board the TRMM and GPM observatories) the
fundamental concept is that in stratiform conditions there is a smooth transition between the solid
to the liquid phase occurring at the freezing level which is marked by a bright band in the radar
reflectivity [11]. In contrast, convective profiles are characterized by high reflectivities often exceeding
50 dBZ and extend to altitudes above 10 km without any evidence of a transition region at the freezing
level [12].

Radars with WIVERN adopted frequency (94 GHz) are subject to return signal saturation due
to non-Rayleigh effects (a 94-GHz rarely detects echoes above +20 dBZ, [13,14], significant signal
attenuation [15], and multiple scattering effects that can distort the signal [16]. Despite these challenges,
several studies use the CloudSat CPR reflectivity profile features near the cloud top to identify
convective cores [17,18]. The underlying rationale is that the overshooting of high radar reflectivities
is an indicator of the larger-size particles pushed high up only possible with the presence of strong
rising updrafts. A key limitation of the spaceborne C/S classifications proposed so far is that they are
mainly based on vertical profiles of reflectivities. These approaches generally lack direct dynamical
information such as Doppler velocities, and make limited use of the spatial texture of the reflectivity
field.

In addition to spaceborne approaches, substantial efforts have been made to classify convective
and stratiform (C/S) regions using ground-based radar observations. Early attempts relied on
rule-based heuristics, using radar reflectivity thresholds and pattern recognition techniques. The
Steiner–Houze–Yuter (SHY95) algorithm identifies convective cores based on peak reflectivity and
local neighbourhood contrast [19], while later fuzzy-logic methods extend the idea to three-dimensional
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volumes [20]. These methods are simple and fast but struggle with bright-band artifacts and varying
radar geometry.

In recent years, supervised models have gradually replaced fine-tuned threshold methods. [21]
trained a k-nearest-neighbour classifier on WSR-98D Doppler fields and achieved a 10–15% skill
boost over SHY95. Neural networks are now massively used in connection to C/S classification
from geostationary observations. For example, [22] built a convolutional neural network (CNN) that
detects overshooting tops linked to severe convection and is able to discriminate between intense and
ordinary convection. [23] showed that gradient-boosted trees fed with spectral visible and infrared
data outperform traditional texture metrics for convective region detection.

For passive microwave observations, [24] showed that a suite of machine-learning models trained
on GPM Microwave Imager (GMI) brightness temperatures can already separate convective, stratiform
and mixed precipitation with 90–94% global accuracy, while [25] applied a Bayesian ResNet to
GPM–GMI microwave brightness temperatures, achieving >90% accuracy in distinguishing convective
and stratiform precipitation while also providing per-pixel uncertainty estimates, underscoring the
value of data-driven approaches for precipitation-type retrievals.

The U-Net encoder–decoder backbone has become the de facto standard for pixel-level
classification tasks. For example, Hoeller et al. [26] applied a vanilla U-Net to identify convective cold
pools, while Han et al. [27] reported similar improvements when using a U-Net-based nowcasting
model to forecast 30-minute radar precipitation. More recently, Zhang and He [28] proposed an
ensemble of lightweight U-Nets for processing FY-4B geostationary satellite imagery, achieving
inference latencies below 100 ms per frame while maintaining a probability of detection (POD) greater
than 0.70.

Beyond convective/stratiform (C/S) discrimination, the U-Net architecture has been successfully
adapted for a variety of geophysical classification tasks, including cloud typing, land-cover mapping,
and severe weather prediction. For instance, the 1D-CloudNet, a one-dimensional nested U-Net,
combines Himawari-8 radiance data with CloudSat-derived labels to classify nine cloud categories at
nadir [29].

Hybrid encoder designs have also enhanced the accuracy of land-cover segmentation in
multispectral imagery [30], while multi-feature fusion U-Nets have improved overall classification
performance across diverse surface imaging scenes [31].

Remarkably, U-Net variants have even been applied to generate spatiotemporal tornado risk
maps, by leveraging multivariate fields from numerical weather prediction (NWP) models [32].

This work aims to exploit recent advances in U-Net to develop a C/S classification algorithm
specific to the WIVERN mission. The mission’s conical scanning Doppler radar provides a 2D
curtain of reflectivity and Doppler velocity data, as well as 1D colocated measurements of brightness
temperatures. The methodologies usually applied to 2D horizontal texture fields are therefore now
being applied to 2D slanted cuts through the atmosphere. The goal is to identify pixels that are
convective, i.e. those with vertical velocities exceeding 1 m/s, with downdrafts and updrafts combined
into a single probabilistic score.

2. Simulations of WIVERN observables

The WIVERN instrument with its conically scanning wide-swath radar (Fig. 1(a)) represents
a major technological innovation, unifying three advanced satellite sensing capabilities into a
single system: range-resolved Doppler velocity, reflectivity measurements, and passive microwave
observations. These are integrated through a unique radar–radiometer concept, enabling co-located
active and passive measurements to maximize scientific synergy.

During ESA Phase-0 and Phase-A studies an instrument simulator has been developed that
simulates all three WIVERN observables from both atmospheric and surface targets based on successive
refinements [2,33,34] of the backbone simulator proposed in [35]. In brief, the simulator takes output
from cloud resolving models that provides 3D fields of winds, hydrometeors, temperature, water
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vapor and translate them in 94 GHz stimuli (i.e. scattering properties such as 94 GHz extinction,
scattering and backscattering coefficients, single scattering albedo and asymmetry parameters). Then,
each scene is illuminated by the WIVERN antenna and scanning pattern for any given orbit. The
radar observables are simulated accounting for the sampling rate, the sensitivity and the specific pulse
scheme of the instrument (details in [2]).

Figure 1. Panel (a): Conically scanning geometry envisaged for the WIVERN mission. The width of the
footprint is exaggerated for illustration purposes. Panel (b): vector diagram explaining the WIVERN
LoS equation showing how to relate VHLoS, the vertical wind (w) and the Doppler terminal velocity
(VD

T ) to the VLoS measurement.

WIVERN most innovative measurement will be the LoS Doppler velocity (VLoS). Because of the
slant angle of observation this quantity will be affected by:

1. The Horizontal Line of Sight (HLoS) wind velocity (VHLoS), i.e. the horizontal wind along the
horizontally-projected LoS direction;

2. the vertical wind velocity, w;
3. the radar reflectivity weighted terminal velocity of the hydrometeors (VD

T ) [36].

While the latter contribution can be generally estimated based on temperature and strength of the radar
backscattered signal, the first two contributions are generally entangled. The WIVERN fundamental
equation linking the Line-of-Sight (LoS) Doppler velocity (VLoS) with the other three variables is given
by

VLoS = VHLoS sin(θI) + (w + VD
T )︸ ︷︷ ︸

VD
z

cos(θI) (1)

and is illustrated in Fig. 1b.

2.1. A dataset of tropical cyclone simulations

The training data used in this study were generated using the WIVERN end-to-end simulator.
Simulations were driven by atmospheric conditions derived from a mesoscale numerical weather
prediction system. Specifically, data from a WRF (Weather Research and Forecasting) model simulation
of Hurricane Milton were used to create the dataset employed in this study. The WRF dataset spans
the period from 6 October 2024 at 10:00 UTC to 8 October 2024 at 00:00 UTC, with output intervals of
one hour (39 hours in total).

During this time, the cyclone evolved from a tropical storm to a Category 5 hurricane. Each hourly
snapshot captures a domain of approximately 1250×1250×20 km3 centred around the cyclone eye,
with a horizontal resolution of roughly 1.5 km and vertical resolution of approximately 500 m (but finer
at heights lower than 3 km). For each snapshot, 200-second simulations (equivalent to 40 full antenna
rotations) were performed. The time domain was centred around the moment when the satellite’s
ground track passed closest to the hurricane eye. For each of the snapshots, overpasses were placed by
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Figure 2. Representation of an overpass of WIVERN over hurricane Milton in the Gulf of Mexico for the
10/07 at 23:52 UTC. The track of hurricane Milton is shown, color coded to the intensity of the storm,
from 5th October 2024 at 18:00 UTC to 10th October 2024 at 00:00 UTC. In white, cloud data was plotted
using geostationary infrared data for the day of 8th October 2024 at 00:00 UTC. The square marker
indicates the closest position of the satellite on the ground with respect to the cyclone eye (diamond
marker). The cyan dashed line is the satellite ground track, while the gray dotted line represent the
conical scan (the whole swath is highlighted by the shadowed region in cyan). The curtains for relevant
quantities outputted by the simulator along the sector highlighted in yellow are plotted in Fig. 4.

translating an ascending ground track passing exactly over the eye from -6 to +6 deg in longitude in
steps of 1 degree (13 tracks in total). Fig. 2 show a representation of the WIVERN sampling strategy
in Hurricane Milton. The dataset was obtained by randomly running several combinations of the
13 possible tracks for each of the 39 hours of hurricane Milton data. The final dataset was produced
by randomly selecting various combinations of these 13 tracks across the 39 time steps, yielding
approximately 80 simulation runs in total. This approach ensured a rich diversity of atmospheric
scenarios across a wide range of hurricane intensities.

From the simulation output, the key variables which compose the model inputs are extracted:
vertical brightness temperature TV

B (monodimensional), horizontal brightness temperature TH
B

(monodimensional), Doppler velocity VLoS (2-dimensional), and reflectivity Zm (2-dimensional), with
a horizontal spacing of 1 km and a vertical spacing of roughly 70 m. In addition, the simulator outputs
the “true” vertical component of the wind field, wLoS, projected along the instrument LoS. To obtain
the physical vertical velocity, wLoS is divided by sin(42◦), reflecting the nominal incidence angle of the
conically scanning beam (Fig. 1(a)).

An example of a simulated overpass is illustrated in Figs. 3, 4. Fig. 3 is a zoomed version that
highlights the WIVERN dense sampling strategy. The Total Water Path (TWP) is indicative of areas
with deep hydrometeor layers and the presence of vertically extended liquid water columns due
to strong vertical air motions. Superimposed, the WIVERN scan, color-coded with the H channel
brightness temperature TH

B . In magenta, contours of actual convective regions are highlighted, where
the maximum wind speed along the column exceeds 3 m/s.

Fig. 4 shows the three main radar products (Zm, VLoS and TB) and corresponding relevant
quantities (TWC, VHLoS, and VD

z ) along a segment of the WIVERN slanted vertical cross section.
In panels (a) and (b), the eye and eyewall of the hurricane are clearly identifiable at the centre of
the plot. The eye is characterised by a column of clear air with near-zero wind velocity, while the
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Figure 3. Detail of the simulated scan example, highlighting convective regions. In greyscale, the
Total Water Path (TWP), i.e. the TWC integrated over the height. Superimposed, the WIVERN scan,
color-coded with the H channel brightness temperature TH

B . In magenta, contours of regions where
the maximum of the windspeed in the column is over 3 m/s, which is the criterion used to identify
convective cells.

surrounding eyewall is marked by high TWC, which leads to signal extinction in the Zm field. Generally,
Zm correlates well with TWC: above the freezing level (approximately 5 km altitude), large anvil clouds
containing high ice water content are visible, while rain bands with abundant low-level hydrometeors
are evident at lower altitudes near the eyewall regions. Even within the eye, low clouds occasionally
contribute to weak radar returns at lower levels.

Panels (c) and (d) show that the Doppler velocity signal is dominated by horizontal winds,
displaying the characteristic dipole pattern of cyclonic circulation—winds of opposite sign appear on
either side of the eye. In panel (f), convective vertical motions are apparent in the eyewall region, while
below approximately 5 km, the vertical velocity is enhanced by precipitation fall speeds. Finally, Panel
(e) reveals that highly convective regions are typically associated with lower brightness temperatures,
consistent with deep, cold cloud tops.

In total, the dataset spans a distance of nearly 5.5 × 106 km along the satellite ground track.
For storage and mini-batching purposes, the data curtain is divided into 10,912 non-overlapping
segments, each covering 500 km along-track. All variables are stored in NetCDF4 format using 32-bit
floating-point precision. Fig. 4 illustrates an example of a single chunk extracted from the full dataset.

Although the dataset, based on simulations of Hurricane Milton, provides a meteorologically
rich test bed with prominent convective activity, convective regions remain a minority class within
the full 5.5-million-kilometre dataset. Across the entire record, only 0.62% of the data corresponds to
areas with vertical wind speeds exceeding 3 m/s, with an additional 3.67% falling within the range
of 1–3 m/s. This reflects the well-documented sparsity of strong updraughts and downdraughts
compared with widespread stratiform regions. The resulting class imbalance in the training labels is
mitigated through loss reweighting and probability threshold tuning, as detailed in Sect. 3.
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Figure 4. Curtains of the sector of the scan highlighted in yellow in Fig. 2. In the left column, from top
to bottom, the observables: (a) measured reflectivity, (c) measured Doppler velocity, and (e) vertical
and horizontal brightness temperature. In the right column, from top to bottom, the antenna weighted
"true" quantities obtained directly from the WRF model: (b) Total Water Content (TWC), (d) horizontal
component of the LoS wind, (f) vertical component of the LoS wind plus the hydrometeor terminal
velocity.

3. Methodology

3.1. Link between WIVERN observables and convective identification

All three WIVERN observables (94 GHz reflectivities, line-of-sight Doppler velocities and 94 GHz
brightness temperatures) contain valuable information related to the presence of convection. This
statement is supported by insights gained from previous missions such as CloudSat and ongoing
missions like EarthCARE, both of which employ cloud radars operating at the same frequency.

94 GHz Reflectivity Profile.Numerous studies have demonstrated that high radar reflectivity
values near cloud tops observed by the CloudSat CPR (e.g. values exceeding 10 dBZ above 10 km
altitude) are effective indicators of convective cores [17,18]. Within CloudSat data, three commonly
applied criteria are used to identify deep convection:

1. The CPR cloud mask (2B-GEOPROF product) much exceed a value of 20.
2. There must be a continuous radar echo extending from below 2 km to above 10 km in altitude.
3. The echo-top height of the 10 dBZ reflectivity contour must exceed 10 km. A reflectivity of 10 dBZ

is typically considered a proxy for the presence of precipitation-sized particles in convective
clouds [37]. The extent to which such large particles are lifted towards the cloud top serves as an
indirect measure of updraught intensity [38].

An example extracted from CloudSat data is shown in Fig. 5. The black dots indicate locations along
the CPR data that meet the deep convection. The CPR profiles corresponding to two such profiles are
shown in Panel (c) (dashed lines). There are distinct differences among these profiles with the blue line
one having a clear signature of multiple scattering [16] with no evident transition between the solid
and liquid phase at the melting layer and the cyan one, on the other hand, having a sharp transition
at about 4 km with a large reflectivity gradient between 1 and 4 km, a signature of rain attenuation
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Figure 5. Precipitation event on the 11/01/2008 over Bolivia and Argentina observed in an ascending
CloudSat overpass. (a) CloudSat 94-GHz Tb in K. (b) CPR reflectivity. (c) Example of CPR reflectivity
profiles: two in deep convective cores meeting the criteria from Takahashi et al. [18] (dashed lines) and
two in a stratiform region (continuous lines).

[39]. Profiles in more stratiform regions (red and magenta continuous lines) on the other hand, show a
strong positive vertical gradient of reflectivity below the freezing level.

94 GHz Doppler Velocity. Observations from nadir-looking airborne radars (e.g. Heymsfield et al.
[40]) and the recently launched EarthCARE mission [41] have revealed increased variability in vertical
Doppler velocities in the presence of convective motions. In such environments, strong updraughts
and downdraughts often occur in close proximity, resulting in significant spatial variability in the
Doppler velocity measurements. The EarthCARE Doppler radar, which is nadir-pointing, provides
direct measurements of the vertical Doppler velocity (VD

z in Eq. 1). Recent findings by Galfione et al.
[41] confirm that this variability is a reliable indicator of convective activity.

In contrast, WIVERN performs conical scanning at an incidence angle of 42◦. Although the vertical
component of the wind is attenuated by a factor of 0.74 due to the projection onto the line-of-sight
(as described in Eq. 1), the LoS Doppler velocities from WIVERN will still be sensitive to the rapid
fluctuations in vertical velocity (w) commonly found in convective regions.

94 GHz Brightness Temperature. Previous studies employing microwave radiometers have
demonstrated that the presence of precipitation-sized ice particles leads to a depression in brightness
temperatures (Tb) at higher frequencies (≥ 37 GHz), relative to the warmer background [42–44].
Among the various types of ice particles, graupel plays a key role in causing this depression at 94 GHz.
Its presence in the atmospheric column is linked to the riming process, which is typically intensified
by strong updraughts [45,46].

This characteristic is evident in CloudSat Tb observations: Panel (a) of Fig. 5 clearly shows a
substantial drop in brightness temperature below 200 K in the vicinity of the convective core. While 94
GHz Tb measurements from CloudSat have been used to advance understanding of ice microphysics
[47], it is surprising that they have not been widely exploited in studies of deep convection. Our
simulations further support these findings, with Tb depressions reaching values below 100 K in intense
convective cores.
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Figure 6. Network architecture for CONSTRAINN-medium. Numbers indicate each layer size. Orange:
convolutional layers. Red: pooling layers. Blue: Unpooling layers. Purple: softmax layer.

Taken together, these results highlight the significant potential of all three WIVERN
observables—94 GHz radar reflectivity, Doppler velocity, and brightness temperature—for convection
identification. A distinct advantage in WIVERN’s case is that all three measurements are
beam-matched, ensuring spatial and angular consistency in their retrievals.

3.2. Convective/Stratiform Mask

In our simulation framework, the first step involves estimating the WIVERN sampling
volume-averaged vertical air motion. This is achieved by applying the antenna pattern weighting
function to the modelled vertical velocities within the radar’s sampling volume. The resulting averaged
vertical air motion serves as the reference truth for subsequent analysis.

Importantly, our models are not trained to reproduce the exact magnitude of the vertical velocity.
Instead, the reference vertical velocity is first transformed into a smoothed convection–stratiform mask,
which serves as the training target. The models are then trained to learn this classification structure
rather than predict precise velocity values.

For each pixel-value w of the reference vertical velocity matrix, a corresponding target mask value
m is obtained by mapping it to [0, 1] with a linear rule:

m =


0, if |w| ≤ 1 m/s

1, if |w| ≥ 3 m/s
|w|−1

2 , otherwise.

(2)

Note that absolute values of w are considered, hence ignoring the vertical motion direction (i.e., no
distinction between updrafts and downdrafts). m is set to NaN in regions which produce reflectivities
below WIVERN sensitivity (-25 dBZ). The resulting mask is a floating-point values image whose values
are between 0 and 1, whereas values close to 1 mark vigorous convection.

3.3. Pipeline Overview

Each 500 km segment of data is stored as an individual NetCDF file, which contains the four input
channels—vertical and horizontal brightness temperatures, reflectivity, and Doppler velocity—along
with the computed target mask.

To ensure consistency in data representation, the brightness temperature variables are tiled into
2D tensors, providing a common spatial shape across all input channels.

The dataset is divided into a training set and a cross-validation set using a 9:1 ratio. Reflectivity
values below -25 dBZ are capped at -25 dBZ, and min–max normalisation is applied across all variables
to standardise the input range for model training.

3.4. Network Architectures

Three encoder–decoder U-NET variants have been implemented. Details of their architectures
are provided in Tab. 1. All models employ bilinear up-sampling, skip concatenations, a 1× 1 output
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Model Size Parameters Initial Filters Depth
(M) (down blocks)

Mini 8 32 4
Medium 30 64 5
Large 500 128 6

Table 1. Architectural summary of the three CONSTRAINN variants. “Parameters” is the total
number of trainable parameters (expressed in millions), “Initial Filters” is the number of feature maps
in the first convolution, and “Depth” is the number of down-sampling (encoder) blocks.

convolution, and optional sigmoid activation for inference. Dropout is injected at the bottleneck to
mitigate overfitting.

3.5. Training Setup

Overall, the training dataset consisted of 10912 samples, for a total of approximately 5.5 millions
km and 45 GB of simulated track data. Utilizing a single NVIDIA A40 GPU, the duration for training
spans from 3 to 4 hours for Mini configurations and extends up to 24 hours for Large setups.

3.6. Inference and evaluation

During evaluation the same cleaning and normalization steps are applied. The network is then
executed in sigmoid mode: the raw logits from its final 1× 1 convolution are passed through the sigmoid
function

σ(z) =
1

1 + e−z (3)

turning every pixel into a calibrated probability in the interval [0, 1]. Running the model in sigmoid
mode produces true probabilities that can be directly compared with the continuous target mask or
thresholded for ETS, POD, FAR and F1.

3.6.1. Metrics

For measuring performance, non-thresholded metrics were employed (Mean Absolute Error
(MAE), Mean Squared Error (MSE) and Binary Cross Entropy Loss (BCE)), defined as:

MAE =
1
N

N

∑
i=1

∣∣ŷi − yi
∣∣ (4)

MSE =
1
N

N

∑
i=1

(
ŷi − yi

)2 (5)

BCE = − 1
N

N

∑
i=1

yi ln ŷi +
(
1 − yi

)
ln
(
1 − ŷi

)
(6)

where N is the number of valid pixels in each image, ŷi ∈ [0, 1] is the network output and yi ∈ [0, 1]
the target mask.
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For further performance assessment our task is reformulated as a binary classification problem
and four thresholded metrics are computed: Probability of Detection (POD), False Alarm Rate (FAR),
Equitable Threats Score (ETS), F1-score.

POD =
TP

TP + FN
(7)

FAR =
FP

TP + FP
(8)

ETS =
TP − (TP+FP)(TP+FN)

N

TP + FP + FN − (TP+FP)(TP+FN)
N

(9)

F1 =
2 TP

2 TP + FP + FN
(10)

A light-weight postprocessing routine is applied: for every pixel the average of the mask values
inside a 3 × 11 window (3 km wide, 0.7 km tall) is computed. If that local mean exceeds the
cross-validated threshold n = 0.05, the pixel is flagged as convective; otherwise it is labelled as
stratiform, to return a discrete representation in which each pixel has been assigned a value of either 0
or 1 (or NaN). After thresholding, a 2 × 2 confusion matrix with true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN) is obtained. All four metrics above are built from
these counts.

4. Case Studies

The performance of the model is illustrated through three case studies.
Fig. 7 presents a 500 km slice through the simulated Hurricane Milton, capturing a broad

stratiform shield with embedded convection between approximately 150 km and 320 km along-track.
The brightness temperature field (upper-left panel) exhibits sharp drops only in narrow bands,
suggesting the presence of isolated deep convective towers embedded within an otherwise extensive
anvil. This structure is corroborated by the reflectivity panel (centre-left), which reveals a broad layer
of 0–15 dBZ reflectivities spanning altitudes of 6–15 km. The Doppler velocity panel (bottom-left)
displays a characteristically noisy pattern, yet clear upward motion signatures (yellow–red) can still be
identified near the convective tower cores. The C/S mask (middle-right) translates these dynamical
indicators into a continuous convective index, which peaks at unity in regions where |w| > 3 m/s.

The U-Net reconstruction (bottom-right) captures both the location and vertical extent of
these convective cores with high fidelity. Notably, the major updraughts between 180–200 km and
240–270 km are recovered with near pixel-perfect accuracy. Some minor discrepancies remain, however,
as the network exhibits a slight over-dilation of the convective areas.

Fig. 8 illustrates the result of transforming the soft convection index into a binary classification
field. The impact of this operation is evident in the upper-left panel: fine filaments visible in the
raw mask (see Fig. 7) are eliminated, while the principal convective core is consolidated into a solid,
contiguous structure. Applying the same thresholding process to the U-Net output (upper-right panel)
yields a similarly coherent reconstruction.

The lower panel combines the two post-processed masks into a four-colour confusion map.
True positives (red) dominate the convective core, indicating that the network not only identifies
the convective region correctly but also captures its full vertical extent. True negatives (blue) are
prevalent across the stratiform canopy, confirming that the model exhibits a low false alarm rate. Most
classification errors manifest as a narrow yellow halo of false positives surrounding the edges of the
convective towers. False negatives (green) are absent in this particular example and were observed
only rarely across the entire test set.

Fig. 9 presents case study #2, which features a more fragmented convective structure compared to
case study #1. The scene includes a chain of convective bursts embedded within a broad stratiform
shield. The brightness temperature trace (upper-left panel) shows repeated dips between 130 km
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Figure 7. Case study #1 with input data (left column) and output (right column) for the
CONSTRAINN-Large network. Top-left: Brightness temperatures, Center-left: Reflectivity, Bottom-left:
Doppler velocity, Top-right: Raw wind vertical velocity, Center-right: Target Mask, Bottom-right:
reconstructed image.
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Figure 8. Binary thresholded output from the same sample of Fig. 7. Top-left: Postprocessed C/S Mask.
Top-right: Postprocessed reconstructed image, Bottom: Overlapped images, highlighting True Positive,
True Negative, False Positive and False Negatives regions.

and 320 km, indicating the presence of multiple overshooting tops rather than a single, well-defined
eyewall. The reflectivity field confirms this pattern, revealing narrow columns exceeding 15 dBZ
embedded within an expansive 5–15 dBZ stratiform layer, which deepens from around 5 km on the
left to over 15 km at 400 km along-track.

The Doppler velocity panel displays corresponding streaks of intense upward motion
(yellow–red), flanked by weaker downdraughts—typical signatures of pulse-type convection. The C/S
mask successfully isolates the convective cores, assigning the surrounding ice clouds to the stratiform
category. The U-Net reconstruction accurately retrieves all major convective cores and even captures
the wispy overshooting feature near 150 km. However, it also introduces several small “satellite” blobs
that remain below the threshold in the ground truth.

After applying the sliding-window post-processing filter (Fig. 10, top row), the predicted
convective canopy appears smoother, and many of the spurious speckles disappear. The confusion
map (bottom row) shows large true-positive regions (red) along the main convective towers, reflecting
excellent recall. False positives (yellow) tend to appear around tower flanks and some mid-level anvil
regions, while false negatives (green) are concentrated in a few narrow vertical spires—suggesting the
model occasionally underestimates the extent of very slender cores. Nevertheless, the prevalence of
true positives and true negatives across the scene confirms that overall precision remains high, despite
the scene’s structural complexity.
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Figure 9. Case study #2 with input data (left column) and output (right column) for the
CONSTRAINN-Large network. Top-left: Brightness temperatures, Center-left: Reflectivity, Bottom-left:
Doppler velocity, Top-right: Raw wind vertical velocity, Center-right: Target Mask, Bottom-right:
reconstructed image.

Finally, Figure 11 presents an additional case (case study #3), sampling a broad stratiform shield
interrupted by a single intense convective tower, in contrast to the chain of smaller cells seen in
previous cases. The brightness temperature panel reveals a sharp, V-shaped plunge of nearly 200 K
centred around 70 km along-track. The reflectivity field confirms the presence of a narrow convective
column extending above 17 km, with significant attenuation beneath it. The Doppler velocity panel
supports this scenario, displaying a distinct needle-like vertical structure at the same location.

The U-Net reconstruction accurately predicts both the along-track position and the vertical extent
of the core, while correctly identifying the downwind anvil as stratiform. Minor artefacts appear as
faint streaks above 14 km, likely reflecting overconfident predictions of weaker convective activity.
After post-processing, the filtered output maps are visually almost indistinguishable; however, the
confusion image reveals subtle differences. The convective column is classified almost entirely as true
positive (red). A thin halo of false positives (yellow) surrounds the top of the tower, indicating that the
network is slightly more inclusive than the ground truth in classifying the anvil fringe. False negatives
(green) are absent in this case.
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Figure 10. Binary thresholded output from the same sample of Fig. 9. Top-left: Postprocessed C/S
Mask. Top-right: Postprocessed reconstructed image, Bottom: Overlapped images, highlighting True
Positive, True Negative, False Positive and False Negatives regions

Overall, the three case studies demonstrate the strong performance of the U-Net architecture in
C/S classification, effectively handling both isolated and embedded convection scenarios.

5. Results and Discussion

Table 2 returns a complete picture accounting for both the capacity-vs-skill curve and the
contribution of each input channel. Moving from Mini to Medium and then to Large trims the pixel-wise
losses almost monotonically (BCE from 0.031 → 0.028 → 0.023; MAE from 0.0153 → 0.0133 → 0.0098)
and lifts ETS from 0.481 to 0.553, while FAR drops by roughly four percentage points overall. The
returns, however, diminish: the medium model spends 4× the parameters of the mini version for a
10–12 % gain in the continuous metrics, whereas the large model costs an order of magnitude more
parameters but only a further 15–20 % improvement. In practice, therefore, the medium configuration
may offer the best cost–benefit ratio for an operational setting, with the large model acting as a
high-skill but GPU-hungry benchmark, especially training-wise.

The channel ablations rows (from 4th to 8th) refine this picture. Removing either brightness
temperature or Doppler velocity perturbs all scores by less than half a percent, evidence that the
network can largely substitute one signal with the other two. Dropping reflectivity is more nuanced:
the continuous losses improve slightly and FAR plunges to 0.188, but POD falls to 0.944 as the network
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Figure 11. Case study #3 with input data (left column) and output (right column) for the
CONSTRAINN-Large network. Top-left: Brightness temperatures, Center-left: Reflectivity, Bottom-left:
Doppler velocity, Top-right: Raw wind vertical velocity, Center-right: Target Mask, Bottom-right:
reconstructed image.

misses more weak convective examples, indicating that reflectivity adds recall at the expense of
extra noise along core edges. The single-channel experiments underline Doppler’s importance: a
model driven only by Doppler velocity scores the highest ETS (0.604) and lowest FAR (0.185), yet its
POD slips to 0.961, confirming that velocity alone captures vertical-motion structure but sometimes
underrates marginal convection. Relying solely on reflectivity performs almost on par with the full
model in POD but lags behind in every other metric, reinforcing the view that the three sensors are
synergistic, with Doppler providing the bulk of structural skill and reflectivity acting as a recall
booster.

6. Conclusions

This study introduces CONSTRAINN, a family of U-Net models trained on simulated data
replicating the expected measurements from the WIVERN mission, to deliver a continuous, physically
interpretable index of convective activity. By converting simulated vertical winds into a continuous
convective/stratiform mask and by fusing Doppler velocity, reflectivity and brightness temperature
information, the approach offers a reliable methodology to estimate vertical wind speed, as required
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Figure 12. Binary thresholded output from the same sample of Fig. 11. Top-left: Postprocessed C/S
Mask. Top-right: Postprocessed reconstructed image, Bottom: Overlapped images, highlighting True
Positive, True Negative, False Positive and False Negatives regions

by the mission’s Level-2 retrieval chain. On the hurricane Milton benchmark a mean squared error of
0.38% is achieved, with an ETS of 60%, a POD of 98% and a FAR of 18%. It is worth noticing that,
given that the convective pixels exceeding 1 m/s make up about 3.6% of our data, this FAR mostly
reflects the network dilating real convection cores by a few pixels rather than fabricating artificial
convective regions, an error that is considered acceptable within our application domain.

The current models are hurricane-focused and do not distinguish between downdrafts and
updrafts. Future works might include generalization of the presented models to retrieve directly
the vertical wind velocity, preserving the direction of movement. Moving toward a wider range of
applicable scenarios, a natural improvement and future work should consist in generalizing the model
architecture to different observational scenarios, such as mid-latitude systems, meso-scale convective
systems, frontal systems or polar lows. Porting the same architecture to EarthCARE data, INCUS and
other upcoming Doppler missions would further consolidate a unified, convection classifier for the
next generation of space-borne atmospheric radars.

Author Contributions: AB wrote part of the paper, defined and supervised the project. F. Mustich drafted the
paper, built the U-NET, and did the data analysis. F. Manconi built the training dataset and contributed to Sect. 2.1.
AP run the WRF simulations. PK reviewed the paper and contributed to Sect. 3.
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Model BCE↓ MAE↓ MSE↓ ETS↑ FAR↓ POD↑ F1↑

CONSTRAINN-Mini 0.0311 0.0153 0.0066 0.481 0.253 0.978 0.815
CONSTRAINN-Medium 0.0281 0.0133 0.0057 0.512 0.238 0.982 0.829
CONSTRAINN-Large 0.0230 0.0098 0.0042 0.553 0.217 0.983 0.845
CONSTRAINN-Large (No Br. Temperature) 0.0238 0.0104 0.0044 0.547 0.220 0.980 0.842
CONSTRAINN-Large (No Doppler Velocity) 0.0243 0.0106 0.0046 0.548 0.220 0.984 0.844
CONSTRAINN-Large (No Reflectivity) 0.0238 0.0089 0.0038 0.580 0.188 0.944 0.855
CONSTRAINN-Large (Only Doppler Velocity) 0.0240 0.0098 0.0042 0.604 0.185 0.961 0.865
CONSTRAINN-Large (Only Reflectivity) 0.0248 0.0110 0.0048 0.543 0.222 0.981 0.841

Table 2. Validation performance of the three CONSTRAINN variants. Arrows indicate whether lower
(↓) or higher (↑) values are better.
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